Mesoscopic Simulations of Polyelectrolyte Electrophoresis in Nanochannels
نویسندگان
چکیده
We present the results of mesoscopic dissipative particle dynamics (DPD) simulations of coupled electrohydrodynamic phenomena on the microand nanoscale. The effects of electroosmotic flow and slippage combined with polyelectrolyte electrophoresis are investigated in detail, taking full account of hydrodynamic and electrostatic interactions. Our numerical results are in excellent agreement with analytical calculations.
منابع مشابه
Polyelectrolyte electrophoresis in nanochannels: a dissipative particle dynamics simulation.
We present mesoscopic dissipative particle dynamics-simulations of polyelectrolyte electrophoresis in confined nanogeometries for varying salt concentration and surface slip conditions. Special attention is given to the influence of electroosmotic flow on the migration of the polyelectrolyte. The effective polyelectrolyte mobility is found to depend strongly on the boundary properties, that is,...
متن کاملMesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels
We present dissipative particle (DPD) simulations of electrolyte flow in nanochannels for varying salt concentration and surface slip conditions. First, a method is presented by which the slip length δ Β at the channel boundaries can be tuned systematically from negative to infinity by introducing suitable wall-fluid friction forces. Using this method, we study electroosmotic flow (EOF) in nano...
متن کاملMesoscale modelling of polyelectrolyte electrophoresis.
The electrophoretic behaviour of flexible polyelectrolyte chains ranging from single monomers up to long fragments of a hundred repeat units is studied by a mesoscopic simulation approach. Abstracting from the atomistic details of the polyelectrolyte and the fluid, a coarse-grained molecular dynamics model connected to a mesoscopic fluid described by the Lattice-Boltzmann approach is used to in...
متن کاملHierarchical Procedure Bridging the Gap between Mesoscopic and Atomistic Simulations for Materials Design
A hierarchical procedure bridging the gap between atomistic and mesoscopic simulations for materials design is presented. A dissipative particle dynamics (DPD) is adopted for a mesoscopic simulation technique. In this method, a molecular structure is represented using a coarse-grained model, connecting soft spherical particles that correspond to a group of several atoms. The interaction paramet...
متن کاملConformational transition of polyelectrolyte chains extending over the de Gennes regime in slitlike nanochannels
The confinement-induced conformational transitions of the polyelectrolyte chain are characterized with the coarse-grained Brownian dynamics simulations and the blob theory. Submicron-sized biopolymer xanthan is chosen as a model polyelectrolyte taking into account both flexible and semiflexible chains for comparison. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in ...
متن کامل